Paper ID | D6-S2-T4.2 |
Paper Title |
Information Leakage in Zero-Error Source Coding: A Graph-Theoretic Perspective |
Authors |
Yucheng Liu, Lawrence Ong, Sarah Johnson, The University of Newcastle, Australia; Joerg Kliewer, New Jersey Institute of Technology, United States; Parastoo Sadeghi, University of New South Wales, Australia; Phee Lep Yeoh, University of Sydney, Australia |
Session |
D6-S2-T4: Information Leakage |
Chaired Session: |
Monday, 19 July, 22:20 - 22:40 |
Engagement Session: |
Monday, 19 July, 22:40 - 23:00 |
Abstract |
We study the information leakage to a guessing adversary in zero-error source coding. The source coding problem is defined by a confusion graph capturing the distinguishability between source symbols. The information leakage is measured by the ratio of the adversary's successful guessing probability after and before eavesdropping the codeword, maximized over all possible source distributions. Such measurement under the basic adversarial model where the adversary makes a single guess and the guess is regarded successful if and only if the estimator sequence equals to the true source sequence is known as the maximum min-entropy leakage or the maximal leakage in the literature. We develop a single-letter characterization of the optimal normalized leakage under the basic adversarial model, together with an optimum-achieving memoryless stochastic mapping scheme. An interesting observation is that the optimal normalized leakage is equal to the optimal compression rate with fixed-length source codes, both of which can be simultaneously achieved by some deterministic coding schemes. We then extend the leakage measurement to generalized adversarial models where the adversary makes multiple guesses and allows a certain level of distortion, for which we derive single-letter lower and upper bounds.
|