Paper ID | D3-S3-T2.2 |
Paper Title |
Optimal Index Assignment for Scalar Quantizers and M-PSK via a Discrete Convolution-Rearrangement Inequality |
Authors |
Yunxiang YAO, Wai Ho MOW, The Hong Kong University of Science and Technology, Hong Kong SAR of China |
Session |
D3-S3-T2: Topics in Coding I |
Chaired Session: |
Wednesday, 14 July, 22:40 - 23:00 |
Engagement Session: |
Wednesday, 14 July, 23:00 - 23:20 |
Abstract |
This paper investigates the problem of finding an optimal nonbinary index assignment from M quantization levels of a maximum entropy scalar quantizer to M-PSK symbols transmitted over a symmetric memoryless channel with additive noise following decreasing probability density function (such as the AWGN channel) so as to minimize the channel mean-squared distortion. The so-called zigzag mapping under maximum-likelihood (ML) decoding was known to be asymptotically optimal, but the problem of determining the optimal index assignment for any given signal-to-noise ratio (SNR) is still open. Based on a generalized version of the Hardy-Littlewood convolution-rearrangement inequality, we prove that the zigzag mapping under ML decoding is optimal for all SNRs. It is further proved that the same optimality results also hold under minimum mean-square-error (MMSE) decoding. Numerical results are presented to verify our optimality results and to demonstrate the performance gain of the optimal M-ary index assignment over the state-of-the-art binary counterpart for the case of 8-PSK over the AWGN channel.
|