All Dates/Times are Australian Eastern Standard Time (AEST)

Technical Program

Paper Detail

Paper IDD5-S3-T1.3
Paper Title Secure Distributed Linearly Separable Computation
Authors Kai Wan, Technische Universität Berlin, Germany; Hua Sun, University of North Texas, United States; Mingyue Ji, University of Utah, United States; Giuseppe Caire, Technische Universität Berlin, Germany
Session D5-S3-T1: Secure Distributed Computation
Chaired Session: Friday, 16 July, 22:40 - 23:00
Engagement Session: Friday, 16 July, 23:00 - 23:20
Abstract Distributed linearly separable computation, where a user asks some distributed servers to compute a linearly separable function, was recently formulated by the same authors and aims to alleviate the bottlenecks of stragglers and communication cost in distributed computation. For this purpose, the data center assigns a subset of input datasets to each server, and each server computes some coded packets on the assigned datasets, which are then sent to the user. The user should recover the task function from the answers of a subset of servers, such the effect of stragglers could be tolerated. In this paper, we formulate a novel secure framework for this distributed linearly separable computation, where we aim to let the user only retrieve the desired function without obtaining any other information about the input datasets, even if it receives the answers of all servers. In order to preserve the security of the input datasets, some common randomness variable independent of the datasets should be introduced into the transmission. We show that any non-secure linear-coding based computing scheme for the original distributed linearly separable computation problem, can be made secure without increasing the communication cost (number of symbols the user should receive). Then we focus on the case where the computation cost of each server (number of datasets assigned to each server) is minimum and aim to minimize the size of the randomness variable (i.e., randomness size) introduced in the system while achieving the optimal communication cost. Novel information theoretic converse bound on the randomness size and some achievable schemes are proposed, where they coincide in some cases.