Paper ID | D2-S6-T4.3 |
Paper Title |
Detectability of Denial-of-Service Attacks on Arbitrarily Varying Classical-Quantum Channels |
Authors |
Holger Boche, Minglai Cai, Technical University of Munich, Germany; H. Vincent Poor, Princeton University, United States; Rafael F. Schaefer, Technische Universität Berlin, Germany |
Session |
D2-S6-T4: Classical Quantum Communication Channels |
Chaired Session: |
Tuesday, 13 July, 23:40 - 00:00 |
Engagement Session: |
Wednesday, 14 July, 00:00 - 00:20 |
Abstract |
Communication systems are subject to adversarial attacks since malevolent adversaries might harm and disrupt legitimate transmissions intentionally. Of particular interest in this paper are so-called denial-of-service (DoS) attacks in which the jammer completely prevents any transmission. Arbitrarily varying classical-quantum channels, providing a suitable model to capture the jamming attacks of interest, are studied. Algorithmic detection frameworks are developed based on Turing machines and also Blum-Shub-Smale (BSS) machines, where the latter can process and store arbitrary real numbers. It is shown that Turing machines are not capable of detecting DoS attacks. However, BSS machines are capable thereof implying that real number signal processing enables the algorithmic detection of DoS attacks.
|