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Abstract—In this paper, we consider the problem of minimizing
the queue length for data gathering in wireless sensor networks
(WSNs) while considering the quality of information received at
the sink. We extend the nominated Slepian-Wolf-Cover bound
for distributed source coding (DSC) into blockwise streaming
scheme, where distributed sources can be compressed without loss
exploiting the spatio-temporal correlations between data samples
from individual sensors. Most importantly, unlike the classic
Slepian-Wolf-Cover bound, which requires the statistical infor-
mation of the information sources a priori, our proposed time-
average inequality can dynamically adapts to the information in
every scheduling period. We contrive and solve an optimization
problem to show the capability of this bound in real applications.

I. INTRODUCTION

Information entropy, defined in information theory, mea-
sures the information content and can be considered as the
minimum amount of bits to compress data (and remove redun-
dancy) without resulting in information loss [1]. Information-
centric communications which prioritize information over de-
vices for allocating communication resources, is in contrast
to conventional “device-centric” communications which treat
information from different devices as independent bit streams,
aiming to optimize the quality of service (QoS) of individual
devices such as transmission rate, delay, and outage under con-
strained resource [2]–[4]. Nevertheless, optimizing QoS such
as the sum rate or throughput fairness could result in reception
of redundant information, causing the waste of communication
resources. In scenarios like wireless sensor networks (WSNs),
since the sensors are deployed to collectively gather data, data
from different devices often exhibits correlation [5]. To better
serve these kind of applications, it is the optimization of the
quality of information received that should be focused on.

In this vein, different information-centric mechanisms that
aim to optimize the fidelity of received information set by
applications have been investigated [6]–[10]. Although these
endeavors have substantiated several benefits of information-
centric communications, most have so far explored only spatial
or temporal correlation among information gathered by differ-
ent sensor nodes [11], [12]. In this paper, however, we explore
both spatial and temporal correlations of the data [13]–[15].
As a classic element in information theory, distributed source
coding (DSC) regards the compression of multiple correlated
information sources that do not communicate with each other.

Modeling correlation between multiple sources at the decoder
side, Slepian-Wolf-Cover bound provides the theoretical guar-
antee to losslessly shift the computational complexity from en-
coders to the joint decoder, thus makes appropriate frameworks
for applications like sensor networks and multimedia com-
pression [16]. While several works have applied Slepian-Wolf-
Cover bound on resource allocation problems [17], [18], we
extend the classic Slepian-Wolf-Cover source coding theorem
and propose another information-theoretic bound that allows
compression rate to vary in different scheduling periods. This
extension allows the scheduler to decide and allocate the com-
munication resources period by period, without knowing the
statistical information of the sources in advance. Such adaptive
property coincides with the scheduling mechanism of wireless
sensor networks aggregating stochastic information of interests
from the environment [19], [20]. Therefore, we formulate an
optimization problem on minimize queue length scheduling
for wireless sensor networks indicating the practical use of
our proposed time-average inequality. We then transform this
bound into virtual queues, and represent the rate region by
matrices assuming multivariate Gaussian distribution [1], [21].

II. SLEPIAN-WOLF-COVER IN BLOCKWISE STREAMING

A. Source Model

We denote S = {1, 2, 3, . . . , |S|} as the set of sensor nodes
where each i ∈ S generates data samples as triggered by the
event of interests, and the data samples generated by sensor
i at different timestamps follow an arbitrary ergodic process,
denoted by Xi. T represents the length of a time period for
aggregating the sampled data. At the end of each period, all
samples are aggregated and compressed into one data packet,
waiting for transmission in the sensor queue. Xi[k] is the
random vector with length |Xi[k]| = ni[k], consisting of
data samples gathered from time t = kT to t = (k + 1)T ,
represented by stochastic process Xi[k] = {Xi(t) | ∀ kT ≤
t < (k + 1)T}. Hence, the amount of data stored by sensor
i in its queue at time t = (k + 1)T (i.e. at the end of period
k) is Ci[k] = H(Xi[k]). The queue size of sensor i at time
t = kT (i.e. the beginning of period k) is Qi[k]. Queue is
initially empty with Qi[0] = 0 and the value of Qi[1] is equal
to the amount of data Ci[0], aggregated from t = 0 to t = T .



B. Slepian-Wolf-Cover Bound in Blockwise Streaming Scheme

Given a general quantity of discrete memoryless indepen-
dent channels with multiple supply nodes and a single sink,
the Slepian-Wolf-Cover theorem extends the original Slepian-
Wolf coding to multiple sources [22]. The Slepian-Wolf-Cover
bound can be written as:

∑
i∈W

γi ≥ H(XW |XW c) = H(XW∪W c)−H(XW c)

= H(X)−H(XW c),∀W ⊆ S,W c = S −W,
(1)

where γi is the coding rate of i and H(XW ) is the entropy
of ∪i∈WXi. Such bound indicates the theoretical rate region
for the lossless compression of multiple sources, yet there is
a major bottleneck that plagues its practical use. That is, the
statistical information among all information sources has to
be revealed and known a priori. In this research, we leverage
this theorem for compressing multiple correlated information
sources to come up with a new time-average bound, which
allows the system to make decision of the coding rate period
by period, leading to the reduction of average queue length.

In other words, we regard to a blockwise streaming scheme,
where time period T represents a block, and the compression
rate of each sensor node adapts at every time period k. This
is nonetheless different from the original Slepian-Wolf-Cover
theorem as in (1), so we propose Theorem 1 as an extension:

Theorem 1 (The Slepian-Wolf-Cover Bound for Blockwise
Streaming Scheme). Denote γi[k] as the compression rate of
sensor i in kth scheduling period, then the extended Slepian-
Wolf-Cover bound for the blockwise streaming scheme is:

lim
L→∞

1

L

L∑
k=1

∑
i∈W

γi[k] ≥ lim
L→∞

1

L

L∑
k=1

[
H(XW [k]|XW c [k])

]
,

(2)

for all W ⊆ S, W c = S−W . Concatenating the data sample
vector Xi[k] from all sensors together in the order of their
indexes, we obtain X[k], which can be seen as a sequence
keeping all the sampled information in scheduling period k.
Since ergodicity, this is equivalent to the following inequality:

lim
L→∞

1

L

L∑
k=1

[
E
[
H(XW [k]|XW c [k])

]
− E

[ ∑
i∈W

γi[k]
]]
≤ 0,

(3)
which guarantees the condition for lossless data compression.

Proof. Starting from a single source model, the Asymptotic
Equipartition Property (AEP) indicates that while A(n)

ε is a
set of typical sequences, then |A(n)

ε | ≤ 2n(H(X)+ε) for any
ε > 0. Suppose we have f : Xn → (1, 2, ..., 2nγ) and
f(xn) is a random index from {1, 2, ..., 2nγ}, applying the

random binning technique, the error probability of decoding
this sequence would be:

P (n)
e = Pr[∃ xn 6= yn, xn ∈ A(n)

ε , yn ∈ A(n)
ε , f(xn) = f(yn)]

≤
∑

yn∈A(n)
ε

Pr[yn]
∑

xn∈A(n)
ε ,xn 6=yn

Pr[f(xn) = f(yn)]

=
∑

yn∈A(n)
ε

Pr[yn]
∑

xn∈A(n)
ε

2−nγ ≤ 2−nγ2n(H(X)+ε).

(4)

Hence, for source with n → ∞, the error probability P
(n)
e

falls to 0 while the compression rate γ ≥ H(X) + ε, ∀ε > 0.
After the example, we can now generalize multiple sources

lossless coding into blockwise streaming scheme. To illustrate,
we show the distributed lossless compression of two ergodic
sources Xi and Xj . By Shannon-McMillan-Breiman theorem,

− 1

L
log p(Xi[1], ..., Xi[L], Xj [1], ..., Xj [L])→ H(Xi, Xj),

− 1

L
log p(Xi[1], ..., Xi[L])→ H(Xi),

− 1

L
log p(Xj [1], ..., Xj [L])→ H(Xj)

(5)

with probability one, where

H(Xi, Xj) = lim
L→∞

1

L
H(Xi[1], ..., Xi[L], Xj [1], ..., Xj [L]),

H(Xi) = lim
L→∞

1

L
H(Xi[1], ..., Xi[L]),

H(Xj) = lim
L→∞

1

L
H(Xj [1], ..., Xj [L]).

(6)
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Fig. 1: Illustration of how we associate multiple arbitrary
ergodic sources into correspondence with those L-sequences
and the predefined entropy rates. In each period, all samples
within which are aggregated and represented by a new signal.

Consequently, as illustrated in Fig. 1, for arbitrary ergodic
sources Xi, Xj and ε > 0, there exists integer L and a set



T (L)
ε of typical L-sequences xi = (xi[1], ..., xi[L]), xj =

(xj [1], ..., xj [L]) such that

p(xi,xj) = p(

L︷ ︸︸ ︷
xi[1], ..., xi[L],

L︷ ︸︸ ︷
xj [1], ..., xj [L])

= p(

ni=
∑L
k=1 ni[k]︷ ︸︸ ︷

xi(t1), ..., xi(tni),

nj=
∑L
k=1 nj [k]︷ ︸︸ ︷

xj(t1), ..., xj(tnj ))

(7)

and

Pr[T (L)
ε ] ≡ Pr[(xi,xj) ∈ T (L)

ε ] =
∑
T (L)
ε

p(xi,xj) ≥ 1− ε.

(8)
Therefore,

∣∣∣∣− 1

L
log p(xi,xj)−H(Xi, Xj)

∣∣∣∣ ≤ ε

2
,∣∣∣∣ − 1

L
log p(xi)−H(Xi)

∣∣∣∣ ≤ ε

2
,∣∣∣∣− 1

L
log p(xj)−H(Xj)

∣∣∣∣ ≤ ε

2
,

(9)

where the first inequality in (9) implies

2−L(H(Xi,Xj)+ε/2) ≤ p(xi,xj) ≤ 2−L(H(Xi,Xj)−ε/2). (10)

Additionally, H(Xi|Xj) ≤ lim
L→∞

1
L

∑L
k=1H(Xi[k]|Xj [k])

holds and it can be derived from

lim
L→∞

1

L

L∑
k=1

H(Xi[k]|Xj [k])

= lim
L→∞

1

L

L∑
k=1

[
H(Xi[k], Xj [k])−H(Xj [k])

]
= lim
L→∞

1

L

L∑
k=1

H(Xi[k], Xj [k])− lim
L→∞

1

L

L∑
k=1

H(Xj [k])

≥ H(Xi, Xj)− lim
L→∞

1

L

L∑
k=1

H(Xj [k])

≥ H(Xi, Xj)−H(Xj) = H(Xi|Xj),
(11)

given that lim
L→∞

1
L

∑L
k=1H(Xi[k], Xj [k]) ≥ H(Xi, Xj) and

H(Xj) ≤ lim
L→∞

1
L

∑L
k=1H(Xj [k]). The second inequality can

be proven by applying Hadamard-Fischer’s inequality on (26)

whereas the first inequality can be proven along these lines:

lim
L→∞

1

L

L∑
k=1

H(Xi[k], Xj [k])

= lim
L→∞

1

L

L∑
k=1

[
−
∑
xi,xj

p(xi[k], xj [k]) log p(xi[k], xj [k])

]

= lim
L→∞

∑
xi,xj

log

[ L∏
k=1

(
1

p(xi[k], xj [k])

)p(xi[k],xj [k])/L]

≥ lim
L→∞

∑
xi,xj

log

[ L∏
k=1

(
1

p(xi[k], xj [k])

)∏L
k=1 p(xi[k],xj [k])]

= lim
L→∞

∑
xi,xj

log

[(
1

p(xi,xj)

)p(xi,xj)]
= H(Xi, Xj).

(12)

Now, let the set of xi that are jointly typical with xj be
defined by Jxj

= {xi | (xi,xj) ∈ T (L)
ε }. Since for each xj

1 =
∑
xi

p(xi|xj) =
∑
xi

p(xi,xj)

p(xj)
≥

∑
xi∈Jxj

p(xi,xj)

p(xj)

≥
∑

xi∈Jxj

2−L(H(Xi,Xj)+ε/2)

2−L(H(Xj)−ε/2)
= |Jxj

|2−L(H(Xi|Xj)+ε),

(13)

using the concept of random binning as in (4) and (11) yields

P (L)
e ≤ lim

L→∞

∑
(xi,xj)∈T (L)

ε

p(xi,xj)|Jxj
|
[ L∏
k=1

2−γi[k]
]

≤ lim
L→∞

2L(H(Xi|Xj)+ε)2−
∑L
k=1 γi[k]

≤ lim
L→∞

2−L
(

1
L

∑L
k=1 γi[k]− 1

L
∑L
k=1H(Xi[k]|Xj [k])−ε

)
= 0

(14)

under condition lim
L→∞

1
L

∑L
k=1

[
γi[k]−H(Xi[k]|Xj [k])

]
> 0.

Similarly, this proof can be extended to multiple sources.

To interpret, Theorem 1 loosens the original Slepian-Wolf-
Cover bound (1), that in some periods, the compression rates
can be outside of the achievable rate region if ergodically
the time-average compression rate remains in the time-average
achievable rate region. For notation simplicity, we applied the
standard notation concerning conditional entropies (Gallager,
1968) [23], and let σW [k] = H(XW [k]|XW c [k]). We can also
let
∑
i∈W γi[k] = γW [k], then (3) is furthermore shorten as:

lim
L→∞

1

L

L∑
k=1

E
[
σW [k]− γW [k]

]
≤ 0,∀W ⊆ S,W c = S −W.

(15)
Moreover, to avoid the separate decoding scheme, we require

0 < γi[k] ≤ H(Xi[k]), ∀k ∈ N,∀ i ∈ S. (16)



III. AN APPLICATION AND A SPECIAL CASE OF GAUSSIAN

In this section, we contrive a time-average resource alloca-
tion problem, which actually originates the idea on bound (2)
as an example. 1 This example also leads to an outer bound
assuming multivariate Gaussian. In scheduling period k, each
sensor queue i ∈ S distributively compress its selected data
for uploading by γi[k] and then proactively drop di[k] amount
of data remaining, constrained by the minimum information
fidelity requirement. Considering the simplest TDMA scheme,
the scheduler allocates proper scheduling time ratio τi[k] for
those sensors. Ri[k] is the transmission rate in physical layer.

A. Objective, Problem Transformation and Evaluations
At each scheduling period k ∈ N, the scheduler determines

the transmission time ratio τi[k], compression rate γi[k] and
proactively dropped data di[k] for each sensor i ∈ S to
minimize the average queue length of all sensors, written as:

Minimize
{τ [k],γ[k],d[k]}

lim
L→∞

1

L

L∑
k=1

∑
i∈S

Qi[k]. (17)

Having the objective function (17) and the extended Slepian-
Wolf-Cover bound (2), we can formulate an optimization
problem for resource allocation over L periods. Yet there is
no way for us to directly minimize (17) since this problem
belongs to a stochastic optimization problem. To deal with
these kind of problems, we apply the theoretical tool of
Lyapunov optimization for transforming the problem [9], [24].

By minimizing the drift ∆(Θ[k]) in each scheduling period,
which is identical to maximizing (18) through choosing the de-
cision vector {τ [k],γ[k],d[k]} at each time period k, we can
minimize the time-average queue length while ensuring queue
stability. Inequality (2) is changed into virtual queues (24)
whereas the mean rate stability of the virtual queues validates
the satisfaction of the condition for lossless distributed source
coding (i.e. the extended Slepian-Wolf-Cover bound) and the
desired information fidelity. Qi[k]Ci[k] and VW [k]σW [k] are
removed due to their independence of the decision variables.
After the transformation, we obtain a series of Markov deci-
sion (MDP) problems as in Table I. These problems belong to
signomial geometric programming (SGP), which are mostly
NP-hard. Along with the method in [25], a branch-and-bound
algorithm is provided for attaining the global optimal.

Although the model is eligible for arbitrary ergodic source,
to construct an example, we assume Xi[k] follows a multivari-
ate Gaussian distribution. This assumption is quite acceptable
since Gaussian drives the largest differential entropy among all
kinds of distributions, and can be seen as the worst case. We
denote the covariance matrix as ΣXi [k], and its determinant
as det(ΣXi [k]). Assuming a uniform quantizer of step size ∆
is applied to all data samples, and therefore the entropy (i.e.
the minimum amount of bits needed to encode/compress the
source) of the random vector can be approximated as in [1],

H(Xi[k]) ≈ 1

2
log2

[
(2πe)|Xi[k]|

∆|Xi[k]| det(ΣXi [k])

]
. (26)

1Please resort to [9] for detailed introduction of the communication model.

TABLE I: Formulation for Information-Centric Scheduling

Objective:∑
i∈S

Qi[k](τi[k]TRi[k]/γi[k] + di[k]) +
∑

W⊆S

VW [k]γW [k]

+
∑
i∈S

Zi[k][(1− ξ)τi[k]TRi[k]− ξdi[k]]
(18)

Subject to:
Non-negative time ratio constraint:

τi[k] ≥ 0,∀i ∈ S, (19)

Transmission time summation constraint:
M∑
i=1

τi[k] ≤ 1, (20)

Non-negative dropped data constraint:

di[k] ≥ 0, ∀i ∈ S, (21)

Non-empty queue constraint:

Qi[k] ≥ τi[k]TRi[k]/γi[k] + di[k],∀i ∈ S, (22)

Upper bound on compression rate:

0 < γi[k] ≤ H(Xi[k]), ∀i ∈ S, (16)

Queue update:

Qi[k+1] = max{Qi[k]− τi[k]TRi[k]/γi[k]− di[k], 0}+Ci[k], ∀i ∈ S,
(23)

Virtual queue update for lossless distributed source coding:

VW [k + 1] = max{VW [k]−
∑
i∈W

γi[k] + σW [k], 0}, ∀W ⊆ S, (24)

Virtual queue update ensuring information fidelity ξ:

Zi[k+1] = max{Zi[k] + ξdi[k]− (1− ξ)τi[k]TRi[k], 0},∀i ∈ S. (25)

We also define the spatio-temporal covariance matrix nec-
essary for quantifying term σW [k] for multivariate Gaussian,

σW [k] = H(XW [k]|XW c [k]) = H(X[k])−H(XW c [k])

≈ 1

2
log2

[
( 2πe

∆ )|X[k]| det(ΣX [k])

( 2πe
∆ )|XWc [k]| det(ΣXWc [k])

]
.

(27)

Fig. 2 exhibits the covariance matrix for X[k], denoted as
ΣX [k], where |X[k]| = n[k] is the total number of samples
in period k. Since X[k] is concatenated by Xi[k], n[k] =∑
i∈S ni[k]. Simulation results in Fig. 3 shows our proposed

information-centric scheduling policy can significantly im-
prove the performance by reducing the average queue length.

B. Exponential Reduction of the Virtual Queues

Strongly due to the nature of Gaussian entropy region [21],
2|S| virtual queues VW are needed for storing the information
of (24), causing impractical space complexity. Thus, we pro-
pose Theorem 2 to exponentially reduce the quantity of virtual
queues and derive an outer bound of (2) in terms of matrices:
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Fig. 2: Structure of the spatio-temporal covariance matrix. The
diagonal blocks store the temporal covariances between sam-
ples while the off-diagonal blocks store the spatial covariances.
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Theorem 2. The exponentially many (w.r.t. |S|) virtual queues
proposed in (24) can be rearranged and reduced in the form

VWi [k + 1] = max{VWi [k] + σWi [k]

+ (1− |S|)(γi[k] +
∑
i∈S

γi[k]), 0},∀i ∈ S, (28)

where an outer (lower) bound of σWi
[k] can be estimated as

σWi [k] ≥ 2|S|−1

[
|W ||n[k]| log2

(2πe

∆

)
+ log2 det(ΣX [k])

]
−1

2
log2 det(ΣXĩc [k])− (2|S|−3 − 2)

∑
j∈S\ĩ

log2 det(ΣTj [k]).

(29)

Note that we have shorten the notation {i} with ĩ for simplicity.

Proof. Recall that we have defined VWi
[k] =

∑
i∈W VW [k].

This can be rewritten into vector form: VWi
[k] = ΩV VW [k],

with ΩV being the corresponding binary matrix in size
|S|× 2|S|. Similarly γW [k] = ΩT

V γi[k]. In the kth scheduling
period, the scheduler solves an global optimization problem
deciding the transmission time ratio, the compression rate,
and the amount of data to drop for each sensor node, with
coefficients VWi

[k]. After solving the program, we update from

VW [k + 1] = max{VW [k]−ΩT
V γi[k] + σW [k],0}. (30)

Possessing VW [k + 1], we can derive VWi
[k + 1] for solving

the program once again with VWi [k + 1] = ΩV VW [k + 1].
Then, we can rearrange the virtual queue update equation into:

VWi
[k + 1] = ΩV max{VW [k]−ΩT

V γi[k] + σW [k],0}
= max{VWi [k]−ΩV ΩT

V γi[k] + ΩV σW [k],0},
(31)

where ΩV ΩT
V is a |S| × |S| matrix which is time-invariant

and can be calculated a priori as

ΩV ΩT
V = (|S| − 1)(I|S| + J|S|), (32)

where I|S| denotes |S| × |S| identity matrix and J|S| stands
for all-ones matrix in the same size. The computation of term
ΩV σW [k] involves matrix-vector multiplication of a |S|×2|S|

matrix and a 2|S| × 1 vector, causing exponential time.
Nevertheless, by applying the properties of logarithm, de-

terminants, and block matrices, we propose an O(|S|3) esti-
mation for its upper bound. To begin, with (31) and (32), we
change the transformed virtual queue into scalar form: ∀i ∈ S,

VWi
[k + 1] = max{VWi

[k] +
∑
i∈W

∑
W⊆S

σW [k]

+ (1− |S|)(γi[k] +
∑
i∈S

γi[k]), 0}.

(33)

We aim to calculate the term with double summation, denoted
as σWi [k] =

∑
i∈W

∑
W⊆S σW [k]. With (27), employing the

fact that |X[k]| − |XW c [k]| = |XW [k]| = |W ||n[k]| yields:

σWi
[k] ≈ 2|S|−1

[
|W ||n[k]| log2

(2πe

∆

)
+ log2 det(ΣX [k])

]
− 1

2

∑
i∈W

∑
W⊆S

log2 det(ΣXWc [k]).

(34)

Obviously, only term 1/2
∑
i∈W

∑
W⊆S log2 det(ΣXWc [k])

may vary for different i, which can be further rearranged as:
1

2
log2

∏
W⊆S

det(ΣXWc\ĩ
[k]). (35)

From Hadamard-Fischer’s inequality, by reasonably assuming
det(ΣX∅ [k]) = 1 and letting M = 2|S|−2 − 1, we have∏
W⊆S

det(ΣXWc\ĩ
[k]) ≤ det(ΣXĩc [k]) det(

⊕
j∈S\ĩ

ΣTj [k]M ),

(36)
and with little rearrangements we can finally come to (29).
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